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Flight AttendAnt Work/rest PAtterns, Alertness, And PerFormAnce 
Assessment: Field VAlidAtion oF BiomAthemAticAl FAtigue modeling

BACkgrOuNd

Numerous factors can affect safety, performance, and 
quality of life in individuals working in 24-hr operational 
environments such as industrial shiftwork, military, health 
care, law enforcement, space exploration, and transporta-
tion. One issue of increasing importance to commercial 
aviation is fatigue (Avers, King, Nesthus, Thomas & 
Banks 2009; Mallis, Banks, & Dinges 2010; Nesthus, 
Schroeder, Connors, Rentmeister-Bryant, & DeRoshia 
2007). Fatigue is generally defined as a state of tiredness 
due to prolonged wakefulness, extended work periods, 
and/or circadian misalignment, and is characterized 
by decreased alertness, impaired decision making, and 
diminished neurobehavioral performance capacity (Åk-
erstedt, 1995; Dinges, 1995). The very nature of 24-hr 
operational environments superimposed against human 
circadian physiology all but guarantees the systematic 
production of fatigue. As such, valid and reliable methods 
of predicting compromised performance capacity could 
be valuable as a means of preventing and mitigating 
fatigue-induced safety risks in applied settings. 

One approach that has attracted attention in recent 
years is the development and application of biomathemati-
cal modeling as a means of predicting, preventing, and 
mitigating fatigue-induced risks. Among the more mature 
and well-regarded fatigue models is the Sleep, Activity, 
Fatigue, and Task Effectiveness (SAFTE) model (Hursh 
et al., 2004; Hursh & Van Dongen, 2010; Van Dongen, 
2004). SAFTE is a predictive rather than descriptive model 
that incorporates several dynamic components such as 
a homeostatic sleep reservoir, circadian oscillator, and 

sleep inertia function (see Figure 1). Final cognitive/task 
effectiveness predictions integrate with these components 
but are based on the scientific research literature of well-
controlled fatigue manipulations in well-controlled labo-
ratory settings, ultimately relying on psychomotor speed 
(1/Reaction Time, expressed as a percentage of individual 
well-rested baseline) in the traditional 10-min Psychomo-
tor Vigilance Test (PVT; Basner & Dinges, 2011) as the 
model’s principal outcome metric. Originally developed 
with support from the U.S. Department of Defense, the 
SAFTE model has been adopted for use in a variety of 
operational contexts beyond the military, including rail, 
industrial shiftwork, and aviation. 

Arguably the most critical aspect of any model is its 
predictive validity, which in the case of fatigue models 
and risk management is the extent to which predicted 
performance decrements correspond to adverse perfor-
mance outcomes in the operational environment. In their 
2008 report for the U.S. Federal Railroad Administra-
tion, Hursh and colleagues validated the SAFTE model 
against a database of 30-day work histories preceding 400 
human factors and 1,000 non-human factors freight rail 
accidents. Although the model had no predictive power 
for non-human factors accidents, the relative risk of 
human factors-related accidents increased significantly 
during periods when SAFTE predicted fatigue-induced 
impairments in performance effectiveness (beginning at 
90% of baseline with a linear increase in risk as predicted 
effectiveness decreased). Subsequent analyses of 350 
human factors accidents later demonstrated that the 
relative economic risk (accident probability x [material 
damage + casualty costs]) was increased by 500% when 

Figure 1: SAFTE Model Schematic
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 SAFTE-predicted effectiveness scores were at, or below 
77%, whereas relative economic risk was reduced by 75% 
when SAFTE-predicted effectiveness was above 90% 
(Hursh, Fanzone & Raslear 2011). These validation data 
powerfully demonstrated the SAFTE model’s ability to 
predict human factors accident risk and financial impact 
in rail operations; however, given those studies’ retrospec-
tive design, no measures were taken quantifying changes 
in the engineers’ neurobehavioral performance capacity 
underlying the accidents. Moreover, the generalizability 
of the SAFTE model’s validity—at least the extent to 
which variations in predicted effectiveness correspond 
to variations in performance effectiveness—has never 
been empirically assessed within the context of com-
mercial aviation. 

To address these issues, the present report offers a 
validation analysis of the SAFTE model drawn from the 
extensive database collected during the 2009-2010 Civil 
Aerospace Medical Institute (CAMI)-sponsored Flight 
Attendant Field Study (Roma, Mallis, Hursh, Mead & 
Nesthus 2010). As part of a series of Congressionally-
mandated projects on fatigue, a major goal of the prospec-
tive field study was to evaluate the predictive validity of 
the SAFTE model, using actual sleep/wake/work patterns 
and standardized objective neurobehavioral performance 
metrics taken in the “real world” by a broadly representa-
tive sample of professional cabin crew. To the best of our 
knowledge, the present study is the first validation of any 
fatigue model to use objective performance measures in 
the field within the extremely dynamic commercial avia-
tion environment (cf. Civil Aviation Safety Authority 
[CASA], 2010; also see Spencer and Robertson, 2007).

mEThOd

All human subjects procedures involved in this project 
were independently reviewed and approved by the Insti-
tutional Review Boards of both the U.S. Federal Aviation 
Administration and the Institutes for Behavior Resources. 
The formal letters of approval from each institution are 
available upon request from the authors. All data have 
been de-identified to protect the privacy of those who 
participated.

Participants
We refer the reader to Roma et al. (2010) for extensive 

details on recruitment, materials, and the data collection 
protocol for the CAMI Flight Attendant Field Study. 
Briefly, all eligible applicants were active U.S.-based flight 
attendants categorized according to three broad factors 
serving as the organizing framework for the study’s design. 
These factors were Carrier Type (Network, Low-Cost, or 
Regional), Seniority (self-identified Senior 1/3, Mid 1/3, 
or Junior 1/3), and majority Flight Operations (Domestic 
or International). The study was designed for 210 flight 
attendants as shown in Figure 2. A total of 202 flight 
attendants completed participation in the study, and as 
described below, 178 individuals contributed data suitable 
for the modeling analysis presented herein.

materials and data Collection
Each participant was issued a wristwatch-shaped, 

water-resistant actigraphy device for continuous objective 
recording of sleep/wake patterns (ReadiBand™, Fatigue 
Science, Honolulu, HI, USA) and a touchscreen-based 
personal digital assistant device (PDA) for maintaining a 
daily activity log and collecting objective performance data 

Figure 2: Stratified Field Study Design and Target Sample Sizes



3

(AT&T Tilt™). Using a custom-programmed graphical 
interface on the PDA, all participants maintained the 
activity log by recording the location (airport code) and 
local start time of various activities such as commuting, 
on-duty periods, off-duty periods (either at home or away 
on a work “trip”), and sleep episodes. 

Participants were also required to complete up to four 
discrete test sessions per day: Pre-Sleep, Post-Sleep, Pre-
Work, and Post-Work. Participants were instructed to 
complete the Pre- and Post-Sleep sessions within ~15 min 
of going to bed and waking up, respectively. In addition, 
on work days, participants were instructed to complete 
the Pre- and Post-Work sessions within ~1 hr of “check-
in” and “check-out” (i.e., the beginning and end of the 
entire duty day, respectively). Each test session began 
with a 5-min touchscreen-based Psychomotor Vigilance 
Test (PVT), programmed under the same parameters as 
the Palm-based PVT previously developed at the Walter 
Reed Army Institute for Research (Lamond, Dawson & 
Roach 2005; Thorne, Johnson, Redmond, Sing, Belenky 
& Shapiro 2005) and effectively utilized for various field 
studies in 24-hr operational environments (Lamond, 
Petrilli, Dawson & Roach 2006; Ferguson, Lamond, 
Kandelaars, Jay & Dawson 2008). 

Each participant contributed data every day, as de-
scribed above, for a continuous 3 to 4-week study period. 
To maintain consistency across days, locations, and 
conditions, participants were instructed to conduct their 
test sessions in a comfortable, normally lit environment 
with as few sensory distractions as possible. Participants 
were also informed that their safety and professional 
duties superseded our study requirements, and they 
were explicitly instructed to not engage in any research 
activities while actively engaged in or responsible for any 
work-related activities. 

data Processing and Analysis
Modeling input and predictions. For each individual par-

ticipant, actigraphy-derived sleep/wake patterns and log 
data (including activity, time, and location) were merged 
into a single file suitable for entry into the SAFTE-based 
Fatigue Avoidance Scheduling Tool (FAST) software pack-
age. Actigraphy-based sleep episodes took precedence over 
manually logged sleep episodes; however, logged sleep was 
used during periods for which valid actigraphy data were 
unavailable. To ensure that all participants were modeled 
with an equally full sleep reservoir at the beginning of 
the study, a 3-day period of 8-hr sleep at home between 
2300-0700 hr was inserted into each individual’s schedule 
prior to the empirical actigraphy and schedule data. Each 
participant’s FAST file was manually checked against his/
her processed actigraphy file (to confirm correct sleep/
wake patterns) and PDA activity log (to confirm correct 

times, locations, and sleep periods). Once completed, 
validated, and entered, the SAFTE-FAST program pro-
cessed each individual’s final composite file to produce 
a continuous record of model-predicted effectiveness in 
30-min increments throughout the study period. 

Neurobehavioral performance. Each PVT test yields a 
number of output variables per session, including mean 
Reaction Time (RT, msec), mean Speed (1/RT), total 
Lapses (RTs > 500 msec), and total False Starts (FS, 
premature responses), all of which were included as ob-
jective neurobehavioral performance metrics. However, 
since the SAFTE model’s output metric of Performance 
Effectiveness is based on PVT speed, we used that metric 
as the foundation for initial data processing. Specifi-
cally, the project database began with a total of 11,567 
individual PVT test sessions. Analysis of mean speeds 
from all sessions revealed a bi-modal distribution, with 
values ranging from 0.93 to 92.21 per session (mean + 
SD = 4.87 + 4.68; median + IQR = 3.82 + 1.02), high 
kurtosis (46.68) from the low end of the distribution 
where most sessions fell, and a very heavy positive skew 
(5.45). To avoid undue influence of extreme outliers on 
the eventual calculation of PVT speeds as a percentage 
of individual baselines, sessions with mean speeds greater 
than two standard deviations above the grand distribution 
mean were excluded from further processing. This 6.85% 
reduction in the database then left 10,775 individual 
PVT sessions with which to work. We then removed 
practice sessions recorded during training, sessions with 
timestamps dated outside the respective individual’s activ-
ity log, and all sessions from individuals for whom valid 
FAST reports could not be produced due to corrupted 
files, processing errors, or unreliable activity logging. 
Following these corrective procedures, the final dataset 
was comprised of 10,659 individual PVT sessions from 
178 flight attendants (mean + SD sessions/participant = 
60 + 15, range = 15-92).

Once the final PVT database was established, opti-
mum baseline performances were calculated. Defining 
“baseline” in the types of controlled laboratory studies 
upon which the SAFTE model was based is relatively 
straightforward, typically relying on test sessions con-
ducted following several days of optimal sleep conditions 
but immediately prior to the experimental sleep restric-
tion protocol. Since these orderly sequential conditions 
do not apply to observational field studies, we developed 
an analogous performance-based, rather than time-based, 
method for defining baseline. Specifically, for each 
individual, we rank-ordered all PVT sessions by mean 
speed per session, then used the median of the top 10% 
highest speeds as that individual’s baseline. This metric 
cannot assume that the individual is “well-rested,” as in 
a laboratory study baseline, but like a laboratory study, 
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this baseline still represents “typical best” performance 
with ample room for fatigue-induced decrements and 
countermeasure-induced improvements. Once estab-
lished, mean speeds for all individual PVT test sessions 
were then expressed as a percentage of that median of 
the top 10% fastest speeds. The final outcome metric is 
comparable to the predicted effectiveness score used by 
the SAFTE model and is referred to henceforth as “PVT 
Actual Effectiveness,” separate from RT, non-transformed 
Speed, Lapses, and FS. 

Data analysis. Each PVT test session was paired with 
its corresponding performance effectiveness prediction to 
the nearest 30-min interval from the respective partici-
pant’s SAFTE-FAST file. All test session results were then 
organized into 5% SAFTE Predicted Effectiveness bins 
(<65%, 65-70%, 70-75%, 75-80%, 80-85%, 85-90%, 
90-95%, 95-100%, >100%), and the relationship between 
mean SAFTE prediction and mean PVT performance 
across bins was quantitatively assessed via linear regression 
analysis. Identical regression analyses were performed on all 
performance metrics, including PVT Actual Effectiveness, 
RT, Speed, Lapses, and FS. This suite of analyses was also 
conducted in a nested fashion with increasing operational 
focus, first with all 10,659 sessions collected throughout the 
entire study, then only with the 7,533 sessions taken during 
multi-day work trips (limiting the data to more controlled 
settings governed by work schedules), then finally separate 
analyses of only the Pre-Work (n = 1,712) and Post-Work 
(n = 1,934) sessions to focus on the model’s ability to pre-
dict variations in performance capacity specifically before 

and after a work day. Unless otherwise noted, all data are 
presented as mean + SEM. All analyses were two-tailed as 
applicable, and statistical significance was set at α = .05.

rEsulTs

All Test sessions
Figure 3 (left panel) shows that the frequency distribu-

tions of SAFTE Predicted Effectiveness and the primary 
outcome measure of PVT Actual Effectiveness were similar 
in shape, both with a negative skew, as may be expected 
from measures expressed as a percentage (scaled from 
zero to ~100). Figure 3 (right panel) reveals a modest 
gap in cumulative distributions, indicating more PVT 
Actual Effectiveness data falling within the 75-90% 
range compared to the model predictions, although both 
distributions assumed similar, parallel sigmoidal shapes.

As illustrated in Figure 4, linear regression analyses of 
mean PVT performances across the 5% SAFTE prediction 
bins revealed significant correlations between SAFTE- 
Predicted Effectiveness and PVT Actual Effectiveness (R2 
= 0.884, p < .001), RT (R2 = 0.745, p < .01), and Lapses 
(R2 = 0.486, p < .05; all other R2s < 0.197, ps > .20). 

work Trip Test sessions
Figure 5 shows that focusing only on sessions completed 

while participants were away on a work trip had no obvi-
ous effect on the frequency distributions or cumulative 
distributions of SAFTE-Predicted Effectiveness and the 
primary outcome measure of PVT Actual Effectiveness.

Figure 3: Frequency and Cumulative Distributions of Predicted and Actual Effectiveness Scores for All Test Sessions
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Figure 4: Relationships Between SAFTE Model Predicted Effectiveness and Mean PVT Performances in All Test Sessions

Figure 5: Frequency and Cumulative Distributions of Predicted and Actual Effectiveness Scores for Work Trip Test Sessions
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As illustrated in Figure 6, linear regression analyses of 
mean PVT performances across the 5% SAFTE prediction 
bins revealed significant correlations between SAFTE- 
Predicted Effectiveness and PVT Actual Effectiveness 

Figure 6: Relationships Between SAFTE Model Predicted Effectiveness and Mean PVT Performances in Work Trip Test Sessions

(R2 = 0.889, p < .001), RT (R2 = 0.819, p < .001), Speed 
(R2 = 0.808, p < .001), and Lapses (R2 = 0.484, p < .05; 
FS R2 = 0.128, p > .30). 
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Pre-work and Post-work Test sessions
Figure 7 shows that focusing on the sessions com-

pleted immediately before or after a work day had 
no obvious effect on the frequency distributions or 

Figure 7: Frequency and Cumulative Distributions of Predicted and Actual Effectiveness Scores for Pre-Work and Post-Work Test Sessions

cumulative distributions of SAFTE-Predicted Effec-
tiveness and the primary outcome measure of PVT 
Actual Effectiveness.
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As illustrated in Figure 8, linear regression analyses 
of mean PVT performances across the 5% SAFTE pre-
diction bins reveals a significant Pre-Work correlation 
between SAFTE-Predicted Effectiveness and PVT Actual 
Effectiveness (R2 = 0.530, p < .05; all other Pre-Work 
R2s < 0.392, ps > .07). Analysis of Post-Work sessions 

Figure 8: Relationships Between SAFTE Model Predicted Effectiveness and Mean PVT Performances in Pre-Work and Post-Work Test Sessions

 revealed significant correlations between SAFTE-Predict-
ed Effectiveness and PVT Actual Effectiveness (R2 = 0.600, 
p < .05), RT (R2 = 0.887, p < .001), Speed (R2 = 0.539, 
p < .05), and Lapses (R2 = 0.901, p < .001). Analysis of 
FS was not significant (R2 = 0.006, p > .80). 
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dIsCussION

Whether examining all test sessions, sessions com-
pleted throughout a multi-day work trip, or just those 
sessions completed before and after a work day, predicted 
performance effectiveness scores rendered by the SAFTE 
model correlated significantly with average performances 
on multiple PVT metrics. Specifically, as predicted effec-
tiveness decreased, RTs increased, Speed decreased, and 
Lapses increased—all patterns consistent with impaired 
neurobehavioral performance capacity. Importantly, 
SAFTE-Predicted Effectiveness most strongly and con-
sistently correlated (positively) with the analogous PVT 
Actual Effectiveness metric, and the SAFTE model’s 
predictive ability generally increased with increasing focus 
on test sessions whose timing was governed by operational 
schedules. Given the broadly representative sample of 
participants, extensive longitudinal and standardized 
data collection, and the use of actual sleep/wake/work 
patterns, the results strongly support the validity of the 
SAFTE model for predicting population-level variations 
in objective performance effectiveness. 

Of course, for as encouraging as these results are, 
there are several features of the dataset worth considering 
when interpreting the findings. First, despite the strong 
correlations between SAFTE-Predicted Effectiveness and 
PVT Actual Effectiveness, the concordance between the 
two variables was limited by the differences in the range 
of the two metrics. Mean predicted effectiveness values 
ranged from well below 65% to above 100%, whereas 
the paired actual mean effectiveness scores ranged from 
75-90% (evident in Figures 4, 6, and 8). 

It is in this context that the differences between the 
laboratory data used to develop the SAFTE model and 
the field methods used in the present study may be most 
relevant. For example, the use of a PDA-based touchscreen 
PVT vs. the traditional push-button PVT “box,” the 
use of a 5-min PVT session vs. the traditional 10-min 
session, and the technical limitations of off-the-shelf 
consumer-grade electronics may all have contributed to 
limit the sensitivity, or at least the functional range, of 
mean performance effectiveness. In addition, the differ-
ences between laboratory- and field-based definitions of 
“baseline” may also have affected the final calculations, 
although the influence of this factor is virtually impos-
sible to determine. 

Nonetheless, these concerns only apply to the PVT 
Actual Effectiveness variable since it is analogous to the 
SAFTE-Predicted Effectiveness metric. We contend that 
differences in scale between predicted and actual effec-
tiveness are less important than the essential finding that 
periods of relatively high- and low-predicted performance 
capacity were strongly associated with respective periods 

of relatively high and low actual performance capacity, 
as measured by several PVT variables. Since the 5-min 
PVT itself is not a task inherent to aviation operations 
but rather measures core neurobehavioral processes 
necessary for more complex operational tasks (Lim & 
Dinges, 2008), the key to the SAFTE model’s valida-
tion is that when the model predicts peak performance, 
one is most likely to be at his or her best, and when the 
model predicts severely impaired performance, one is 
most likely to be at their worst, regardless of how “best” 
and “worst” are quantified or otherwise translated to the 
operational context.

Another noteworthy feature of the data was the high 
variability in mean PVT performances observed at the low 
range of predicted effectiveness, particularly at and below 
the 75% bin. The reasons for this are unclear, although 
we do not necessarily view this pattern observed in nearly 
all outcome variables as a limitation. One possibility is 
that fewer test sessions were available in the low-range 
bins, and hence higher SEMs after averaging; however, 
re-analysis of the data in bins of 100 sessions each still 
yielded a similar pattern (results not shown). 

More likely explanations draw from specific features 
of the fatigue construct itself. One possibility comes 
from an emerging area in fatigue research on inherent 
individual differences in sleep need and vulnerability to 
fatigue (Goel & Dinges, 2011; Van Dongen, Baynard, 
Maislin & Dinges 2004a). Simply put, not every indi-
vidual will exhibit performance impairments or the same 
level of impairment under sleep/wake/work patterns 
expected to produce fatigue in the general population, 
and conversely, particularly vulnerable individuals may 
consistently implement prophylactics and countermea-
sures (e.g., caffeine, nicotine, light exposure, exercise) 
to mitigate fatigue effects, regardless of their schedules. 
In both cases, individuals who perform with high intra-
individual consistency, despite model predictions, will 
add variability to the average performances provided by 
their more susceptible colleagues. 

Another potential contributor is the disparity be-
tween subjective fatigue and objective decrements in 
performance capacity (Van Dongen, Maislin & Dinges 
2004b). Indeed, one particularly insidious feature of 
fatigue is a reduced ability to recognize the transition 
from baseline to moderate impairment, so individuals 
whose performance capacity is altered by fatigue may 
not realize it at predicted effectiveness levels above 75%, 
thereby yielding objective performance outcomes in line 
with model predictions. Yet, sleep/wake/work patterns 
that modeled as extremely impaired may have produced 
sufficient subjective fatigue to provoke countermeasure 
implementation (which we did not monitor or control), 
thus mitigating the objective performance decrements 
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one would observe in a controlled laboratory setting, 
ultimately producing PVT performances more similar to 
sessions associated with higher predicted effectiveness bins. 

Finally, another likely contributor is the notion of 
fatigue as “state instability” (or state lability; Dinges & 
Kribbs, 1991; Dorrian, Rogers & Dinges 2005), which 
defines fatigue more as inconsistent performance while 
the brain struggles to maintain vigilance, rather than 
consistently suppressed performance, reflecting the steady 
state of sleep pressure. From this perspective, higher vari-
ability at the very low end of predicted effectiveness would 
be expected, especially when coupled with individual 
differences in sensitivity to fatigue or other extraneous 
factors, and our ability to detect this variability actually 
speaks well of the 5-min touchscreen PVT’s sensitivity as 
a field research tool (cf. Lamond et al., 2006; Ferguson 
et al., 2008). Since this study was intentionally designed 
to capture naturally occurring sleep/wake/work pat-
terns and behavior without any field-validated means of 
quantifying individual vulnerability to fatigue, we must 
accept all of the possibilities described above as potential 
complications. 

Nonetheless, it is at least provocative, if not encourag-
ing from a model validation perspective, to observe that 
this apparent 75% predicted effectiveness “cutoff ” point 
in performance stability is nearly identical to the point at 
which accident severity risk increases 5-fold in freight rail 
operations (77%; Hursh et al., 2011). Despite the various 
issues described above, the emergence of significant orderly 
relationships between model predictions and multiple 
objective neurobehavioral performance metrics further 
supports the SAFTE model’s general validity for use in 
24-hr operational settings while providing direct support 
for the model’s applicability to commercial aviation.

Regarding future directions, our primary Flight Atten-
dant Field Study report (Roma et al., 2010) was based on 
the same PVT performance data utilized for the present 
study’s modeling analysis and revealed pervasive fatigue 
manifested as significant performance decrements in all 
cabin crew at the start of their work shifts relative to 
baseline. Performance capacity worsened from Pre-Work 
to Post-Work as expected, but with differential effects 
based on the broad demographic factors of Carrier Type, 
Seniority, and Flight Ops. If one accepts the validity of 
the SAFTE model for predicting risk as demonstrated 
in rail operations and supported by the present study, 
then a worthy flight attendant-specific follow-up analysis 
would be a detailed model-based investigation of risk as a 
function of these demographic variables (e.g., percentage 
of duty time spent below various predicted effectiveness 
criteria). Since the SAFTE model incorporates circadian 
and homeostatic components of clear relevance to  aviation, 

regardless of demographics, such an analysis could yield 
valuable first insights on the operational variables under-
lying the performance differences observed between the 
various flight attendant groups, which could warrant more 
detailed analyses to empirically inform decision-making 
by regulatory agencies, labor unions, airline manage-
ment, and other organizations with a vested interest in 
cabin safety.

Broader implications of the present work relate to 
further model development and application. For ex-
ample, a unique feature of the SAFTE-FAST system is 
the “Auto-Sleep” function, which estimates sleep dura-
tion in the absence of empirical input. The Auto-Sleep 
function was not used in this study because actual sleep 
measurements were available; yet, the extensive sleep 
data available from this study could be used to inform 
the Auto-Sleep function in SAFTE-FAST. Consistent 
with the evidence-based development approach of the 
SAFTE model it serves, Auto-Sleep’s parameters were 
built on the empirical sleep/wake patterns of shiftwork-
ing rail employees (Federal Railroad Administration 
Research Results, 2011; Pollard, 1991). The extensive 
compendium of objective and subjective sleep/wake/work 
pattern data from the present study could therefore be 
used to validate and/or calibrate the current Auto-Sleep 
function specifically for commercial aviation. 

Another emerging issue in fatigue modeling is in-
dividualization, i.e., incorporating flexible parameters 
based on trait-like individual differences in response to 
the various fatigue-producing inputs accounted for by 
any given model (CASA, 2010; Van Dongen, Bender & 
Dinges 2012). Most model predictions represent a popu-
lation average, and the SAFTE model is no exception, 
although transforming validation data to a percentage 
of individual baselines accommodates individual differ-
ences to some extent. However, by its very nature, such 
a transformation only accounts for differences in some 
baseline parameter derived from the data post-hoc and 
does not accommodate inherent differences in the extent 
to which individuals are vulnerable to fatigue, for example, 
via differences in sleep need, sleep inertia, or circadian 
phasing and amplitude. 

As we have seen in the present study and others (Roma 
et al., 2010; Greeley et al., in press), appropriately defining 
individual baselines in such a way that is conceptually 
valid, statistically beneficial, and operationally feasible is 
a complex matter with no simple solutions, even with a 
large post-hoc dataset with which to work. These issues 
would only be exacerbated by the need to develop a priori 
models at the individual level, especially if intended for 
field application in very large and exceptionally mobile 
populations such as commercial aviation. But this is a 
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challenge the scientific and operational communities must 
eventually confront to maximize the benefits of biomath-
ematical modeling as a fatigue risk management tool. 

In conclusion, predictive fatigue modeling for opera-
tional use is still a relatively young science, so all theo-
retical and empirical work in this area make important 
contributions, nonetheless. The present study utilized 
actual sleep/wake/work data from a broadly representa-
tive sample of professional cabin crew to demonstrate 
clear relationships between performance effectiveness 
predicted by the SAFTE model and objective performance 
outcomes in the field. Despite the study’s limitations, 
the data presented herein further support the predictive 
validity of the SAFTE model, and specifically support 
the model’s validity within the exceptionally dynamic 
operational environment of commercial aviation. 

In terms of vulnerability to fatigue, we believe it is 
reasonable to assume that the professional cabin crew 
population is not inherently different at the genetic/
biological level than any other sub-group within the 
aviation community. Similarly, it is reasonable to assume 
that the commercial aviation population is not inherently 
different than any other group of generally healthy adults 
exposed to round-the-clock work schedules. If so, then 
the SAFTE model and the present study’s comprehensive 
dataset are valuable resources that could continue to 
generate important insights on sleep/work/wake patterns 
and neurobehavioral performance capacity in the “real 
world.” As such, we encourage continued investigation 
of the Flight Attendant Field Study database and further 
development of the SAFTE model in the spirit of science-
based technologies for improving the safety, performance, 
health, and quality of life of those who work in and rely 
on 24-hr operations. 
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